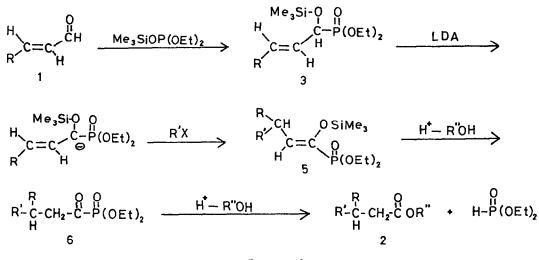
FACILE SYNTHESIS OF β -ALKYL-SUBSTITUTED ESTERS FROM σ, β -UNSATURATED ALDEHYDES Tsujiaki Hata^{*}, Masashi Nakajima, and Mitsuo Sekine Department of Life Chemistry, Tokyo Institute of Technology Nagatsuta, Midoriku, Yokohama 227, Japan

Summary: β -Alkyl-substituted carboxylates were synthesized in good yields from α,β -unsaturated aldehydes by using the 1:1 carbonyl adducts with diethyl bis(trimethylsilyl) phosphite.


Recently, several studies on acyl anion equivalents utilizing carbonyl insertion reactions have appeared.² It has been reported that diethyl trimethylsilyl phosphite (DTSP) reacted with aldehydes to give 1:1 carbonyl adducts in high yields.^{3,4,5} In a previous paper⁵, we proposed α -trimethyl-silyloxybenzylphosphonate anion as a new benzoyl anion equivalent for the unsymmetrical ketone synthesis.

 $\begin{array}{ccc} Me_{3}SiOP(OEt)_{2} & OSiMe_{3} \\ (DTSP) & PhC & PhC - P(O)(OEt)_{2} \end{array}$

In this paper, we wish to report a new method for the conversion of α, β -unsaturated aldehydes (1) to β -substituted carboxylates (2) utilizing 1:1 carbonyl adducts (3) of 1 with DTSP.

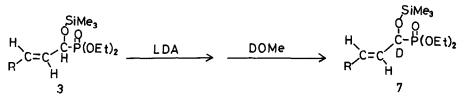
Diethyl 1-trimethylsilyloxy-2-benzalethylphosphonate (3A) was prepared from DTSP and <u>trans</u>-cinnamaldehyde as described previously.⁵ Compound 3A was treated with lithium diisopropylamide (LDA)(1.1 equiv.) in THF at -78° C for 30 min and followed by treatment with methyl iodide (1.1 equiv.) at -78° C for

Scheme I

1 h. The alkylated product (5Aa) was obtained in 43 % yield by rapid separation using column chromatography on silica gel. The NMR spectrum⁶ of 5Aa showed that the alkylation proceeded regioselectively at the ℓ -position to afford stereoselectively E-olefin. Without the isolation of 5Aa the reaction mixture was extracted with methylene chloride and the solvent was evaporated to dryness. Treatment of the residual oil with TsOH(catalytic amount)-EtOH at 60°C for 1 h gave β -methylated ethyl cinnamate (2Aa) in 76 % yield. In the above alkylation, THF was found to be more suitable as the solvent than ether. The conversion of 5Aa to 2Aa might proceed via α -oxophosphonate (6Aa) as depicted in Scheme I. The transformation of 6Aa to 2Aa is explained by the known reactions of β -oxophosphosnates with alcohols to afford esters and dialkyl phosphonates. 7.8 In a similar manner, 1A was alkylated with several alkyl halides and converted to ℓ -alkyl-substituted esters (2Ab-2Ag) in good yields.

The use of trimethylsilyl chloride and bromide as electrophiles gave also β -trimethylsilyl derivative (2Ah) in 49 % and 52 yields, respectively.

The carbonyl adducts (3B-3D) obtained from acrolein, crotonaldehyde, and <u>trans</u>-hexenylaldehyde were also alkylated at the γ -position and converted to the corresponding β -alkyl-substituted esters (2B-2D). The results of these reactions are summarized in Table I. In these reactions, some of initially β -alkylated products, i.e., 5Ae and 2Ba, could be isolated as the exclusive products in 69 % and 58 % yields, respectively. The structures of 5Ae and 2Ba were also confirmed as E-configuration by their NMR spectra.


On the other hand, deuteration of the lithio derivatives of 3A-3D at -78 °C gave α -deuterated parent 1-trimethylsilyloxyphosphonates (7A-7D) in 73 %, 84 %, 90 %, and 37 % yields, respectively. In all cases, the γ -deuterated products were not isolated. The highly regioselective γ -alkylations might be

·							
3 R	R'X (equiv.)	Condition for alkylation or deuteration Time(h)(Temp.)	R"	Treatment of 5 with TsOH-R"OH			Deuteration Yield of 7
				Time (h)	Product	Yield (%)	(१)
Ph (3A)	MeI(1.08)	1 (-78°)	Et	1	2Aa	63	—
	(1.80)	3 (-78°→r.t.)	Et	2	2Ab	76	
	n-PrI(1.14)	0.5 (-78°)	Et	2	2Ac	76	—
	i-PrI(1.12)	3 (-78°→r.t.)	Et	2.5	2Ad	84	_
	PhCH ₂ Br(1.18)	0.5 (-78°)	Et	2.5	2Ae	89	
	CH ₂ =CHCH ₂ Br(1.11)	0.6 (-78°)	Et	2.5	2Af	81	—
	$\frac{1}{2} \frac{1}{2} \frac{1}$	4.5 (-78°→r.t.)) Et	2.5	2Ag	69	
	Me ₃ SiCl(1.04)	5 (-78°→r.t.)	Et	2	2Ah	49	—
	Me ₃ SiBr(1.08)	2 (-78°→r.t.)	Et	4	2Ah	52	—
	CH ₃ OD(1.5)	3 min (-78°)					73 (7A)
n-Pr (3B)	PhCH ₂ Br(1.19)	0.6 (-78°)	Et	2.5	2Ba	51	
	n-BuI(1.15)	0.5 (-78°)	PhCH2CH2	3	2Bb	45	
	(1.10)	0.5 (-78°)	n-Bu	3	2Bc	52	
	CH ₃ OD(4.0)	5 min (-78°)					84 (7B)
Me (3C)	PhCH ₂ Br (1.08)	0.5 (-78°)	Et	2.5	2Ca	75	
	PhCH ₂ CH ₂ Br(1.03)	5 (-78°→r.t.)	Et	2	2Cb	44	
	CH ₃ OD (3.5)	5 min (-78°)					90 (7C)
H (3D)	PhCH ₂ Br(1.11)	1 (-78°)	Et	6	2Da	11	
	n-BuI(1.19)	1 (-78°)	Et	6	2Db	5	
	CH ₃ OD (4.0)	10 min (-78°)	· ••				37 (7 _D)

Table I Preparation of β -substituted carboxylates (2) from \checkmark, β -unsaturated aldehydes (1) via 1:1 carbonyl adducts (3) of 1 with diethyl trimethylsilyl phosphite and deuteration of α -lithio derivatives of 3

All of alkylations were carried out in dry tetrahydrofuran.

due to steric hindrance of the neighboring diethoxyphosphinyl group and trimethylsilyloxy group.

In conclusion, the present reaction sequence provides a convenient method for the synthesis of β -substituted esters from α,β -unsaturated aldehydes. It is also noted that the alkylation took place at the β -position of the starting material 1 and the reaction proceeded highly stereoselectively.⁹⁾

Further extensions of this work are now in progress.

References and Notes

- This paper participates as Part 12 in the series of Silyl Phosphites. Part 10 and 11 are now in preparation. Part 9: M. Sekine and T. Hata, <u>Chem. Commun.</u>, 285 (1978).
- For comprehensive reviews, see D. Seyferth and K. -H. Geiss, "New Applications of Organometallic Reactions in Organic Synthesis", Elsivier, Amsterdam, 1976; O. W. Lever, Jr., Tetrahedron, <u>32</u>, 1943 (1976).
- 3) Z. S. Novikova and I. F. Lutsenko, <u>J. Gen. Chem. USSR</u> (Engl. Transl.), 40, 2110 (1970).
- Z. S. Novikova, S. N. Mashoshina, T. A. Sapozhnikova, and I. F. Lutsenko, <u>ibid.</u>, <u>41</u>, 2622 (1971).
- T. Hata, A. Hashizume, M. Nakajima, and M. Sekine, <u>Tetrahedron Lett.</u>, 363 (1978).
- 6) 5Aa NMR(CCl₄): δ 0.07 (s, 9H, (CH₃)₃Si), 1.19 (t, 6H, J_{H-H}=7.0 Hz, CH₃CH₂), 2.90 (d, 1H, J_{H-H}=8.1 Hz, one of CH₂Ph), 2.91 (d, 1H, J_{H-H}=6.6 Hz, one of CH₂Ph), 3.87 (m, 4H, CH₂O-P), 5.97 (t, 1H, J_{H-H}=J_{H-P}=10 Hz, CH=C), 7.00 (s, 5H, ArH), 7.07 (s, 5H, ArH).
- 7) M. I. Kabachnik and P. A. Rossiiskaya, <u>Bull. acak. sci. U. S. S. S.</u>, <u>Classe sci. chim.</u>, 597 (1945); <u>Chem. Abstr.</u>, 41, 88 (1945).
- 8) K. Terauchi and H. Sakurai, Bull. Chem. Soc. Jpn., 43, 883 (1970).
- 9) Just after the acceptance of this communication, Evans and his coworkers reported a similar reaction process to afford β-alkylated esters including lactons by the use of the carbonyl addition reaction of phosphorodiamidites with α,β-unsaturated aldehydes: D. A. Evans, J. M. Takacs, and K. M. Hurst, J. Am. Chem. Soc., 101, 371 (1979).

(Received in Japan 29 January 1979)